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Abstract

In general, intelligent decision mak-
ing systems receive information
that is very sparse and which is
likely to be hierarchically corre-
lated. Our previous research has
show that hierarchical Fuzzy Sig-
natures are effective, efficient, ro-
bust and flexible with such inputs.
Earlier, we introduced the gener-
alised Weighted Relevance Aggrega-
tion Operator (WRAO) for hierar-
chical Fuzzy Signatures. In this pa-
per, we compare the generalised Or-
dered Weighted Averaging (GOWA)
operator with WRAO to select the
best aggregation method for hierar-
chical Fuzzy Signatures. Addition-
ally, we show a method of learn-
ing hierarchical GOWA using the
Levenberg-Marquardt optimization
Method.

Keywords: Hierarchical Fuzzy
Signatures, Vector Valued Fuzzy
Sets, Aggregation Functions,
OWA, GOWA, WRAO, General-
ized Means, Levenberg-Marquardt
Method.

1 Introduction

The vector valued fuzzy sets concept has
been further generalized in [7] to introduce
the fuzzy signature concept. Fuzzy signa-
tures can model sparse and hierarchically cor-
related data with the help of hierarchically

structured vector valued fuzzy sets and a set
of not-necessarily homogenous and hierarchi-
cally organised aggregation functions. The
set of aggregation functions map the dif-
ferent universes of discourse of the hierar-
chical fuzzy signature structure, from lower
branches to the higher branches. We argue
that these properties help fuzzy signatures to
model problems similar to the nature of hu-
man comprehensible hierarchical approaches
to problem solving. An important advantage
of the fuzzy signature concept is that it can be
used to compare degree of similarity or dissim-
ilarity of two slightly different objects, which
have the same fuzzy signature skeleton. Addi-
tionally, fuzzy signatures are capable of deal-
ing with missing input data. Thus, medical
and economic diagnoses, web and document
information retrieval, data mining are the ob-
vious applications of fuzzy signatures.

In [12] we enhanced the inference in fuzzy sig-
natures, by introducing the Weighted Rele-
vance Aggregation (WRA) method. The con-
cept behind the Weighted Relevance aggrega-
tion method is that the weights in each branch
of the fuzzy signature are the observations of
the relevance of that branch to its higher level
branches in the hierarchical fuzzy signature
structure. Thus, this method introduces extra
knowledge to the fuzzy signature structure to
classify vague data. In addition, it enhances
the adaptability of hierarchical fuzzy signa-
tures to different problem domains.

Later, we further generalized these Weighted
Relevancies and aggregation functions in hi-
erarchical fuzzy signatures, into one operator
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called Weighted Relevance Aggregation Op-
erator (WRAO) [9]. WRAO allows users to
learn both aggregation function and weighted
relevance at the same time for one node
in the hierarchical fuzzy signature structure.
Thus, WRAO simplifies the learning of hi-
erarchical fuzzy signature models from data.
In [10] we have shown a successful way to
extract WRAO for hierarchical Fuzzy Sig-
natures based on the Levenberg-Marquardt
(LM) optimization method [8]. Experiments
in [10] showed that the LM method can learn
both aggregations and weighted relevancies
for hierarchical fuzzy signatures.

The Ordered Weighted Averaging (OWA) op-
erators [14] have gained a considerable atten-
tion in the Multi-Criteria Decision Making
field. OWA provides a class of mean type ag-
gregation selections based on weight param-
eters. This paper compares the performance
of WRAO with a hierarchically organised Or-
dered Weighted Averaging (OWA) operator
[15].

The rest of the paper is organised as follows.
In section 2, we discuss the concept of hierar-
chical Fuzzy Signatures and Weighted Rele-
vance Aggregation (WRA). Section 3 reviews
the Levenberg-Marquardt (LM) optimization
method for learning weights in WRAO and
OWA. Finally, in section 4, we compare these
two aggregation method to select the best
method for hierarchical Fuzzy Signatures.

2 Hierarchical Fuzzy Signatures

Fuzzy signatures can describe, compare and
classify objects with complex structure and
interdependent features. The hierarchical or-
ganisation of fuzzy signatures express the
structural complexity of a problem. The lo-
cal preference relations among the hierarchies
and sub-branches of a fuzzy signature can be
used to approximate the global preference re-
lation of a decision problem.

2.1 Vector Valued Fuzzy Sets

The fuzzy signature concept is a generaliza-
tion of the Vector Valued Fuzzy Sets (VVFS)

concept. The early work of Kóczy [6] intro-
duced the Vector Valued Fuzzy Sets concept.
The VVFS is a special form of an L-fuzzy set,
and can be denoted in the following form:

A : X → [0, 1]n . (1)

It is clear that L = [0, 1]n is in (1) and thus
VVFS is L-fuzzy. The qualitative meaning of
an object is represented by the quantities of
the VVFS. The notation of the vector valued
fuzzy set A is written as A =

(
x, qA

)
and the

membership function qA can be defined as,
qA : X → [0, 1]n, where x ∈ X.

2.2 Hierarchical Fuzzy Signature
Structure

Fuzzy signatures are fuzzy descriptors of
real world objects. They represent objects
with the help of a sets of quantities that
are arranged in a hierarchical structure ex-
pressing interconnectedness and set of non-
homogeneous qualitative measures, which are
the interdependencies among the quantities of
each set, to aggregate these hierarchies. Thus,
fuzzy signatures are capable of handling prob-
lems that are complex and inherently hierar-
chical.

Additionally, the fuzzy signature concept is a
good solution to the rule explosion problem in
fuzzy logic, as fuzzy signatures are hierarchi-
cally structured and inherently sparse. In this
section, we discuss the concept of fuzzy signa-
tures as a practical approach that organised
and aggregate data hierarchically. Now, we
recall the fuzzy signature concept introduced
in [7].

Definition 1 Fuzzy Signature is a VVFS,
where each vector component is another
VVFS (branch) or a atomic value (leaf), and
denoted by,

A : X → [ai]
k
i=1

(
≡

k∏
i=1

ai

)
. (2)

where ai =

{
[aij ]

ki
j=1 ; if branch

[0, 1] ; if leaf

Proceedings of IPMU’08 1377



Med. temp. at 12 hrs.

High temp. at 20 hrs.
Med. temp. at 16 hrs.

High temp. at 8 hrs.

High abdominal pain
High nausea

Med. dia. blood pre.
High sys. blood pre.

Figure 1: A Fuzzy Signature

and Π describes the Cartesian product.

The figure 1 shows an example fuzzy signature
[13]. This fuzzy signature describes an indi-
vidual SARS patient, which is a data point
among many SARS data collected in the year
2003.

2.3 Weighted Relevance Aggregation
(WRA)

Weighted Relevance Aggregation provides an
additional meaning to the fuzzy signature
structure by introducing the weighted rele-
vance of each branch to its higher branches
of the fuzzy signature structure. That is, the
weighted relevance reflects the idea that some
branches provide higher values to the next
level (or to the parent branch) of the fuzzy sig-
nature structure. Some other branches in the
same parent branch provide relatively lower
values to the next level (or to the parent
branch) of the fuzzy signature structure. In
this way WRA enhances the accuracy of the
final results of the Fuzzy Signature. In [12],
we discussed a method of learning weights in
WRA automatically. In [11], we have shown
the successfulness of the weights extraction
method in [12].

We further generalise the weights and the ag-
gregation into one operator called Weighted
Relevance Aggregation Operator (WRAO)
[9]. This subsection briefly describes the
generalised Weighted Relevance Aggregation
(WRAO) operator [9] for fuzzy signatures. In
[10], we showed that WRAO enhances the ac-
curacy of the results of fuzzy signatures, by
allowing better adaptation to the meaning of
the decision making process. Further, WRAO
helps to reduce the number of individual fuzzy

signatures needed for the decision making pro-
cess, by absorbing more patterns into these
recognized by one Fuzzy Signature.

Now, we recall the definition of WRAO in [9].
All the notation in the definition 2 refer to the
arbitrary fuzzy signature in figure 2.
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Figure 2: An Arbitrary Fuzzy Signature

Definition 2 The generalised Weighted Rel-
evance Aggregation Operator (WRAO) of an
arbitrary branch aq...i with n sub branches,
aq...i1, aq...i2, . . . , aq...in ∈ [0, 1], and weighted
relevancies, wq...i1, wq...i2, . . . , wq...in ∈ [0, 1],
for a fuzzy signature is a function g :
[0, 1]2n → [0, 1] such that,

aq...i =

 1
n

n∑
j=1

(aq...ij • wq...ij)pq...i
 1
pq...i

(3)

The WRAO must satisfy the following three
properties,

(i) wq...ij ∈ [0, 1]

(ii)
n∨
j=1

wq...ij ≤ 1

(iii) pq...i 6= 0

In [9], we prove the following two properties
for WRAO.

Theorem 1 Let aq...i be an arbi-
trary branch with n sub branches,
sq...i1, sq...i2, . . . , sq...in , and weighted rel-
evancies, wq...i1, wq...i2, . . . , wq...in, for an
arbitrary fuzzy signature (figure 2). Then
WRAO in definition (2) holds the following
properties.
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(i) Idempotent w.r.t sq...ij, when all wq...ij
are fixed and vice versa,

(ii) Commutative, and

(iii) Monotonic w.r.t sq...ij when all wq...ij are
fixed and vice versa.

Above properties are adequate to satisfy the
requirement to be an aggregation function
[2] as weights, wq...i1, wq...i2, . . . , wq...in, in
WRAO are fixed for any instance of a fuzzy
signature in the decision making phase, and
both weights and aggregation operators vary
simultaneously only in the learning phase.

Theorem 2 The WRAO in definition (2)
holds the following characteristics.

(a) pq...i → 0 then WRAO → geometric mean

(b) lim
pq...i→+∞ g(sq...i1, . . . sq...in;wq...i1, . . . , wq...in)

= max(sq...i1wq...i1, . . . sq...inwq...in)

(c) lim
pq...i→−∞

g(sq...i1, . . . sq...in;wq...i1, . . . , wq...in)

= min(sq...i1wq...i1, . . . sq...inwq...in)

(d) p = 1 then WRAO→ arithmetic mean

(e) p = −1 then WRAO→ harmonic mean

2.4 Ordered Weighted Average
(OWA) Operators

OWA is widely used and popular in multi-
criteria decision making.

Definition 3 The OWA operator of n in-
put arguments, a1, a2, . . . , an , is a mapping,
f : [0, 1]n → [0, 1], that has an associated
weighting vector W = [w1, w2, . . . , wn]T such
that,

(i) wi ∈ [0, 1]

(ii)
∑n

i=1wi = 1

and where

f (a1, a2, . . . , an) =
n∑
j=1

wjbj (4)

where bj is the jth largest element of the n
input argument vector.

OWA operators include min, max, and mean.
Further, Yager [14] has shown that OWA sat-
isfies the basic properties of monotonicity,
idempotency, and generalized commutativity.

Definition 4 A mapping M : In → I is
called a generalized ordered weighted aggrega-
tion (GOWA) operator of n input arguments
if,

M (a1, a2, . . . , an) =

 n∑
j=1

wjb
p
j

 1
p

(5)

where p ∈ [−∞,∞], bj is the jth largest input,
and wj are collection of weights satisfying

(I) wj ∈ [0, 1]

(II)
∑n

j=1wj = 1

In [15], Yager shown his interest to use hierar-
chically organised OWA and weighted average
aggregation methods to solve decision making
problems. In this paper, we use hierarchically
organised OWA as an aggregation method for
the Fuzzy Signatures.

3 Levenberg-Marquardt Learning
of WRAO and OWA from Real
World Data

Methods of learning the weights in OWA and
GOWA can be found in [3, 1] respectively.
In this sub section we explain the Levenberg-
Marquardt learning of both aggregation and
weights factors for WRAO and GOWA in de-
tails.

3.1 Levenberg-Marquardt
Optimization Method
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The LM algorithm is a widely used advanced
optimization algorithm that outperforms sim-
ple gradient descent and other gradient meth-
ods when applied in a wide variety of prob-
lems. The major drawback with the steepest
gradient descent method is that if there is no
line search method combined with it, there is
no guarantee of convergence. LM is a pseudo-
second order method in which the Hessian
matrix is estimated using the gradients [4].
The LM algorithm is a Sum of Squared Error
(SSE) based minimization method that is the
function to be minimized is of the following
special form [8]:

f(s) =
1
2

n∑
i=1

(ti − si)2 =
1
2
‖t− s‖ (6)

Where t stands for the target vector, s for
the predicted output vector of the fuzzy sig-
nature, and ‖‖ denotes the 2-norm. Also, it
will be assumed that there are m parameters
to be learned and there are n records in the
training data set, such that n > m.

Now, the next update of the LM can be writ-
ten as:

u[k] = par[k]− par[k − 1] (7)

Where the vector par[k] contains all learning
parameters, ie. all aggregation factors and
weights factor, of WRAO in equation (3) and
GOWA in equation (5) for the kth iteration.
The LM defines next update u[k] in following
manner:

(JT [k]J [k] + αI)u[k] = −JT [k]e[k] (8)

Where J is the jacobian matrix of the equa-
tion (6), I is the identity matrix of J , and α
is a regularisation parameter, which control
both search direction and the magnitude of
the next update u[k].

The LM algorithm uses the restricted step size
method to find best quasi-optimal solution.
The following algorithm has been given in [4]
for calculating the next update α[k] and using
a trust region r[k], which is given in equation
(9), to achieve a good convergence:

I. Given par[k] and α[k], use (8) to find
u[k]

II. Calculate r[k] use (9)
If r[k] < 0.25 set α[k + 1] = 4α[k]
If r[k] > 0.75 set α[k + 1] = α[k]

2
Otherwise α[k + 1] = α[k]

III. If r[k] ≤ 0 set par[k + 1] = par[k]
Else par[k + 1] = par[k] + u[k]

IV. Find new error e[k+ 1], use equation (6)
If e[k + 1] > threshold then go to I.
Else stop learning.

Where k is the current iteration number. The
trust region r[k] calculation for above algo-
rithm is given by:

r[k] =
f(par[k − 1])− f(par[k])
f(par[k − 1])− q(par[k])

(9)

where approximation of the error, q(par[k]) ={
JT [k]u[k] + e[k]

}
. Initially, the algorithm

starts by choosing an arbitrary α[k] > 0 and
arbitrary values for par[k].

3.2 Learning of WRAO for Fuzzy
Signatures

In this subsection we explain the method of
learning WRAO from real world data briefly,
with more detailed explanations to be found
in [9]. First, to avoid the first 2 constraints on
the weighted relevance factor wq...ij in defini-
tion 2, we replaced it by the following sigmoid
function,

wq...ij =
1

1 + e−λq...ij
(10)

where λq...ij ∈ R. Now, the equation (3)can
be modified as follows,

aq...i =

 1
n

n∑
j=1

(
sq...ij •

[
1

1 + e−λq...ij

])pq...i 1
pq...i

(11)
The pq...i and λq...ij are called the aggregation
factors of branch q . . . i and weighted relevance
factor of sub branch q . . . ij of the fuzzy sig-
nature in figure 2, respectively. This form of
WRAO (11) can be readily used for gradient
based learning.
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The parameters we need to learn are the ag-
gregation factor pq...i and weighted relevance
factors λq...ij for each WRAO at each node
of the fuzzy signature structure in figure 2.
First we can obtain the partial derivatives of
the equation (11) w.r.t. pq...i,

∂aq...i

∂pq...i
=

[
a
1−pq...i

q...i

np2
q...i

]
n∑

j=1

t ln(t)− nt′ ln
(
t
′)

(12)
where t = (aq...ijwq...ij)

pq...i and t
′

= a
pq...i
q...i .

Similarly, we obtain the patrial derivatives of
the equation (11) w.r.t. λq...ik

∂aq...i

∂λq...ik
=

 1
n

n∑
j=1

(sq...ij • wq...ij)pq...i

 1
pq...i

−1

• T (13)

where wq...ij = 1

1+e−λq...ij
and T ={

d([sq...ik•wq...ik]pq...i)
dλq...ik

}
.

3.3 Learning of GOWA for Fuzzy
Signatures

Beliakov [1] has shown a way of learning
weights in GOWA. We use our LM based
method for learning [10, 9], of both weights
and parameter p in GOWA operators. First,
to avoid the 2 constraints on the weights wq...ij
in definition 4, we replaced it by the following
function [3],

wq...ik =
eλq...ik∑n
j=1 e

λq...ij
(14)

where λq...ij ∈ [0, 1] and k ∈ [1, n]. Now, the
equation (5) can be modified as follows,

aq...i =

 n∑
j=1

[
eλq...ij∑n
k=1 e

λq...ik

]
b
pq...i
q...ij

 1
pq...i

(15)

Now, the parameters need to be learnt are the
pq...i and λq...ij for each GOWA at each node
of the fuzzy signature structure in figure 4.
First we obtain the partial derivatives of the

equation (5) w.r.t. pq...i,

∂aq...i

∂pq...i
=

[
a
1−pq...i

q...i

p2
q...i

]
n∑

j=1

t−
[
t
′
ln(t

′
)
] (16)

where t = [wq...ijbq...ij ln(bq...ij)] and t
′

=∑n
j=1wq...ijbq...ij . Similarly, we obtain the pa-

trial derivatives of the equation (15) w.r.t.
λq...ik

∂aq...i
∂λq...ik

=
t

(
1

pq...i
−1

)
pq...i

[
wq...ik(b

pq...i
q...ij − t)

]
(17)

where t =
∑n

j=1wq...ijb
pq...i
q...ij .

4 Experiments: GOWA vs WRAO
for Fuzzy Signatures

Now, we explain the results of 2 experiments
to extract the weights in hieratically organised
WRAO and GOWA from real world data.

4.1 High Salary Selection Fuzzy
Signature

The High Salary Selection problem has been
discussed in [5]. This problem is to find the
degree of relevance of having a high salary
based on contacts, age, and work experience of
a employee. The figure 3 shows the polymor-
phic fuzzy signature, which is obtained using
domain experts knowledge, for the high salary
selection problem.

W111

W112

W113

Poor

Norm.
Qty.

W131

W132

W133

Little

Some

Good

W2

W1

@0

High
Salary

Other

Experience
Work

@2

@1

Experience W121

W122

W123

Yng.

Mid.

Old
@12

W12

W11

Contacts

Age

@11

Figure 3: High Salary Selection Fuzzy Signa-
ture

Note that in figure 3, @i and wi represent the
aggregation function and weighted relevance
of node i, respectively.

We learnt the weights and aggregations for
WRAO and GOWA for each node in the High
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Salary Selection fuzzy signature structure, in
figure 3 using the method explain in section
3. Table 1 shows training and testing re-
sults (Mean Squared Error (MSE)) of the ex-
periment for learning weights of WRAO and
GOWA respectively.

Table 1: Results of High Salary Fuzzy Signa-
ture

MSE Train MSE Test
GOWA 0.1643 0.2014
WRAO 0.0130 0.0130

4.2 SARS Patient Classification
Fuzzy Signature

Next experiments is SARS patient classifica-
tion Fuzzy Signature. Medical practitioners
know that for a certain disease, such as SARS,
they need to check the patient for possible
fever, hypertension, conditions of nausea, and
abdominal pain. In addition, it is fairly im-
portant to monitor fever regularly during the
day as well as blood pressure. Figure 4 shows
a SARS polymorphic fuzzy signature, which
is constructed based on domain expert knowl-
edge. Each symptom check has been divided
into a number of doctors diagnosis levels, such
as slight, moderate, and high for body tem-
perature (fever), low, normal, and high for
both measurements of blood pressure, slight,
medium, and high for nausea, and slight, and
high for abdominal pain.

We learnt the weights for WRAO and GOWA
for each node in the SARS patients classifi-
cation Fuzzy Signature structure, in figure 4
using the method explain in section 3. Table
2 shows training and testing results (MSE) of
the experiment for learning weights of WRAO
and GOWA respectively.

Table 2: Results of SARS Patients Classifica-
tion Fuzzy Signature

MSE Train MSE Test
GOWA 0.1608 0.1611
WRAO 0.0125 0.0079

According to the results of two experiments,
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Figure 4: SARS Fuzzy Signature

it is clearly significant that WRAO outper-
form the GOWA for the aggregation of hier-
archical Fuzzy Signatures. Our observation
for the results of these two experiments is
that Fuzzy Signatures inherently use fuzzy-
fied data to describe objects. The WRAO
has been design to handle the redundancies
exists with fuzzy data such that their weights
express the relevance of fuzzy data to its par-
ent node in a hierarchical structure and uses
aggregation factor to find the optimal mean
value based on the situation. Further, im-
portantly, weights in WRAO are non-additive
compared to that of GOWA. When we use
GOWA in the hierarchical Fuzzy Signatures,
GOWA needs to handle some redundancy in
fuzzy data. But unlike WRAO, the nature
of GOWA is to use both their weights and
aggregation factor to find a mean type aggre-
gation and thus GOWA leaning may fail to
converge to a good solution. These experi-
ments lead to new future research directions
to compare GOWA and WRAO with hierar-
chically organised non-fuzzy data, and non-
hierarchical organised (flat) non-fuzzy data.

5 Conclusion

Hierarchical organisation of GOWA and
WRAO have been discussed. The Levenberg-

1382 Proceedings of IPMU’08



Marquardt Learning method has been used
for the learning of both aggregation factor and
weights of GOWA and WRAO for two real
world problems. The two experiment, con-
cluded that WRAO is better than GOWA for
hierarchical Fuzzy Signature. Our assump-
tion is that OWA is not suitable for the aggre-
gation of fuzzyfied data in hierarchical Fuzzy
Signatures.
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